Finding and Typing New Named Entities in Tibetan from Chinese-Tibetan Parallel Corpora

نویسنده

  • Lirong Qiu
چکیده

Currently there is much interest in the automatic acquisition of entities, with the goal of Named Entity Recognition (NER). However previous work has focused primarily on major languages, with the large, structured, and semantically rich knowledge bases and using the large corpus with annotated NER tags. In this paper, we describe a method for Chinese-Tibetan bilingual named entity recognition using easily obtainable bilingual dictionary and parallel political corpora. We present two distinct steps for NER, one step identifying entity candidates in Tibetan, and the second step typing the entity into the semantic class. We then test the approach on the dataset and give the analysis of NE type errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tibetan Unknown Word Identification from News Corpora for Supporting Lexicon-based Tibetan Word Segmentation

In Tibetan, as words are written consecutively without delimiters, finding unknown word boundary is difficult. This paper presents a hybrid approach for Tibetan unknown word identification for offline corpus processing. Firstly, Tibetan named entity is preprocessed based on natural annotation. Secondly, other Tibetan unknown words are extracted from word segmentation fragments using MTC, the co...

متن کامل

Tibetan-Chinese Bilingual Sentences Alignment Method based on Multiple Features

Sentence-level aligning bilingual parallel corpus is shown significant and indispensable status in machine translation, translation knowledge acquiring and bilingual lexicography research fields, which is the fundamental work for natural language processing. Given the great deal of work in sentence alignment and a variety of methods have developed for bilingual terminology extraction, those are...

متن کامل

Tibetan-Chinese Cross Language Text Similarity Calculation Based on LDA Topic Model

Topic model building is the basis and the most critical module of cross-language topic detection and tracking. Topic model also can be applied to cross-language text similarity calculation. It can improve the efficiency and the speed of calculation by reducing the texts’ dimensionality. In this paper, we use the LDA model in cross-language text similarity computation to obtain Tibetan-Chinese c...

متن کامل

Clustering Research across Tibetan and Chinese Texts

Tibetan text clustering has potential in Tibetan information processing domain. In this paper, clustering research across Chinese and Tibetan texts is proposed to benefit Chinese and Tibetan machine translation and sentence alignment. A Tibetan and Chinese keyword table is the main way to implement the text clustering across these two languages. Improved Kmeans and improved density-based spatia...

متن کامل

Using Word Embeddings to Translate Named Entities

In this paper we investigate the usefulness of neural word embeddings in the process of translating Named Entities (NEs) from a resource-rich language to a language low on resources relevant to the task at hand, introducing a novel, yet simple way of obtaining bilingual word vectors. Inspired by observations in (Mikolov et al., 2013b), which show that training their word vector model on compara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014